Latest updates on WP1



After one year of activities, several results have been achieved:

Under the WP1 (selection of renewable feedstock for ABE fermentation), a preliminary analysis has been conducted by ITACYL together with ENCO on agrofood waste, in order to select the most suitable AFWs wastes to be investigated for biobutanol production. The selected agrofood waste (potato peel, apple pomace, brewers’ spent grain and coffee silverskin) have been chemically characterised and a conservation protocol established.
Recently, the selection of the most suitable biomass degradation pre-treatment for the agro-food waste has been carried out with the aim to improve the ABE fermentation. The task has been completed by ITACYL, which has been working in cooperation with IRIS, TOMSA, IRC-CNR, BIOPOX. Different pre-treatment techniques (autohydrolysis, dilute chemical pretreatment, ultrasound pretreatments, microwave pretreatments, deep eutectic solvents and enzymatic pretreatments), in order to determine the optimal methods for hydrolyzation of the cellulose and hemicellulose fractions and to remove and recovery the ligning fraction. The selection of pre-treatment techniques was based on cost- and energy-efficiency criteria; high fermentable sugar yield; low concentration of inhibitory compounds for the subsequent enzymatic hydrolysis and fermentation steps. The pre-treatments have been compared in terms of simple sugars released (glucose, xylose, etc.) and inhibitors generated for the subsequent hydrolysis and fermentation steps.



Butanol production from agrofood wastes is possible

Biobutanol can be obtained by sugar fermentation. One of the main objectives of Waste2Fuels is the development of suitable pretreatments for lignocellulosic biomass, in order to release simple sugars from cellulose and hemicellulose, thus obtaining fermentable streams for biobutanol production.

Apple pomace, a waste from juice and cider industries, has been successfully employed for biobutanol production. A relatively simple pretreatment method, employing only

Apple pomace

Apple pomace

water and surfactants, has been proposed by ITACyL. Thanks to this technology, and after an enzymatic hydrolysis step, apple pomace broths were fermented and yielded about 9 g/L butanol.

Enzymatic hydrolysis

Enzymatic hydrolysis

These results have been presented at the international scientific conference WCCE 10 held in Barcelona (Spain) in October 2017, and they have been recently published in Applied Microbiology and Biotechnology.

Similarly, potato peel from a snack factory was degraded by employing autohydrolysis (water at high temperature) and enzymatic hydrolysis, thus obtaining a fermentable hydrolysate which produced 8 g/L butanol.

Potato peel

Potato peel

These data have been expounded by ITACyL at the international scientific conference ICEMM09, which took place in Bologna (Italy) in September 2017.

Coffee silverskin, a byproduct from roasting industries, was also successfully pretreated by autohydrolysis and enzymatic hydrolysis at ITACyL’s facilities, yielding about 6 g/L butanol after fermentation.

Coffee silverskin

coffee silverskin

These findings will be presented soon at the international scientific symposium ESBES 2018, which will be held in Lisbon (Portugal) in September 2018.

It is remarkable that no detoxification step prior to fermentation was needed for any of the three agrofood waste hydrolysates tested.

Simple physicochemical pretreatments for agrofood wastes

The selected agrofood wastes (potato peel, apple pomace, brewers’ spent grain and coffee silverskin) contain 8-21% cellulose, 7-19% hemicellulose and 19-33% lignin. In order to use these agrofood wastes as feedstocks for butanol biorefineries, simple sugars must be released from cellulose and hemicellulose. In the Waste2Fuels project, ITACyL has focused on physicochemical pretreatments to degrade these vegetal fibres.


Physicochemical pretreatment 1                  OLYMPUS DIGITAL CAMERA

                                                           physicochemical pretreatments

By applying simple methods like autohydrolysis and surfactant-mediated treatments at relatively mild conditions, potato peel, apple pomace and coffee silverskin wastes were efficiently degraded and subjected to an enzymatic hydrolysis which produced potentially fermentable broths containing 30-45 g/L sugars. However, brewers’ spent grain was more resistant to mild pretreatments and its degradation needed the presence of strong acids.




Highlight of the month

On January 17th the European Parliament voted on the RED II report and endorsed a set of proposals  that establish new goals for renewable energy, energy efficiency and renewable transportation fuels.

In a vote on revising the Renewable Energy Directive, MEPs agreed a 12% transport target for renewable energy by 2030.
The contribution of so-called “first generation” biofuels, made from food and feed crops, should be capped to 2017 levels, with a maximum of 7% in road and rail transport. The share of advanced biofuels, which have a lower impact on land use than those based on food crops, renewable transport fuels of non-biological origin, waste-based fossil fuels and renewable electricity will have to be at least 1.5% in 2021, rising to 10% in 2030.

To meet the overall targets, EU Member States are asked to set their own national targets, to be monitored and achieved in line with draft law on the governance of the Energy Union.

Among the main elements of the Parliament’s position, it deserves to be mentioned the Definition of advanced biofuels which includes, besides feedstocks in Part A of Annex IX, “other biofuels produced from waste and residual biomass not originating from food/feed crops where such biomass fulfills the sustainability criteria as set out in Article 26”.

Regarding biomass, MEPs want support schemes for renewable energy from biomass to be designed to avoid encouraging the unsustainable use of biomass for energy production if there are better industrial or material uses.

The European Parliament has set ambitious target for efficient energy use, which are those European Union need to fullfil Paris commitments, to fight climate change and to lead the energy transition

The renewable energy target was adopted by a vote of 492 to 88, with 107 abstentions. Now the European Commission, the European Parliament and Member States (Council) will start the so-called “trilogue” negotiations to reach a political agreement.


The 10th World Congress of Chemical Engineering

From October 1st to October 5th 2017, the “10th World Congress of Chemical Engineering” was held in Barcelona, Spain. More than 3000 delegates presenting and listening to more than 1500 oral communications led to event that managed to represent the chemical engineering and its thriving ideas and innovation as a whole. Due to the widespread topics, focus is put on the talks given by the members of the Waste2Fuels consortium.

Dr. Martin Miltner (TU Wien) presented “Membrane processes as the key technology in cascaded valorization of municipal organic waste” showing the newest findings in the practical efforts of Butanol enrichment from ABE fermentation broth by pervaporation. His colleague Florian Kirchbacher (TU Wien) put his focus on the optimization of a coupled pervaporation/distillation process to reduce energy demand of the purification process. The work was carried out using Aspen Plus® and showed potential energy savings of up to 50% and this could be even further improved by adopted membrane properties.

The “10th World Congress of Chemical Engineering” offered a very welcomed platform to present the newest insights gained in the Waste2Fuels project to a very broad audience. The discussions after the respective talks showed that interest in biofuels and particularly in biobutanol is very high and pointing to a bright future for this and upcoming projects in this field.

The 9th International Conference on Environmental Engineering and Management

The 9th International Conference on Environmental Engineering and Management has been held from 6th to 9th of September 2017 in Bologna, Italy. The main topics focused on environmental sustainability and ways towards a circular economy. At the conference a wide range of fields where those aspect are of increased importance were represented. The practical research works presented focused on three main topics: environmental biotechnology, water and wastewater cycles and sustainable waste management and exploitation. Biotechnological aspects covered use and effects of different bacteria as well as algae, while the water section presented topics like removal from different pollutants (Cadmium, pharmaceutic compounds) as well as the production of valuable products from wastewater streams. The sustainable waste management section and exploitation section showed a wide variety of potential targets to be produced from waste streams but energy carriers like biohydrogen, biogas and biobutanol were well represented. The other topics focused more on theoretical approaches to waste management like life cycle analysis or process modelling.

The Waste2Fuels consortium made a strong showing at the conference and, although the conference spanned a wide field of topics, contacts made were very interesting and promising.

The 2nd Workshop on ABE Fermentation and Recovery

The “2nd Workshop on ABE Fermentation and Recovery” followed an event in July 2015 in Vienna but basically is the continuation of work initially started by Nasib Qureshi, Ian Maddox and Anton Friedl back in 1989 in New Zealand.

Around 15 researchers attended this workshop and discussed about ongoing projects, potential developments, implementation barriers and novel approaches to the topic. Works presented covered a broad range including biology and genomics of involved microorganisms, bioreactor design and downstream processing. Results from the project WASTE2FUELS as well the setup of the project itself have been presented by Anton Friedl, Richard Goerlitz and Antonio Marzocchella.

The Workshop was highly valuable for all attendees and will surely be perpetuated in the upcoming years.

The 5th International Scientific Conference on Pervaporation, Vapour Pervaporation and Membrane Distillation.

The “5th International Scientific Conference on Pervaporation, Vapour Pervaporation and Membrane Distillation” has been held in June 2017 in Torun, Poland. This event has been combined with the “2nd Workshop on ABE Fermentation and Recovery” which was very fruitful as these membrane processes are promising techniques for a cost- and energy-efficient recovery of solvents from the ABE fermentation broth. Highly renowned personalities within the membrane society have been present as speakers like Dr. Richard Baker, Prof. Dr. Vladimir Volkov, Prof. Dr. Wojciech Kujawski and Dr. Erin Johnson. Industry was also present, amongst others Dr Martin Wolf and Dr. Rob de Lange from PERVATECH BV presented the company portfolio. Around 50 persons attended the conference, mostly from universities and research centres but also from various companies. A big share of presentations dealt with the recovery and enrichment of ABE components and other alcohols. Other topics covered hydrophilic dehydration of different feed solutions and of course the synthesis and characterisation of novel high-performance membrane materials. It has been concluded that membrane separation techniques, especially pervaporation and vapour permeation, will benefit from increasing market shares and a broadening field of applications in the near future. The 6th conference on the topic will take place in July 2019 in Gdansk, Poland.


WP6_Follow up on activities

Under the WP6, Industrial Scale-up, TU Wien is supporting WP 6 with simulation tasks for the overall process in Aspen Plus. Up to now, the focus was put mainly on potential in-situ recovery methods. The results generated in other work packages were used to develop simulation models for adsorption, stripping, pervaporation, distillation as well as coupled approaches.

The latest development was a solution-diffusion based multi-component model for pervaporation process developed for Aspen Plus and parameterized with characteristic membrane values gained through work package 3. Combination with distillation offers first estimates for potential energy savings of up to 50% compared to the traditional production route. Furthermore, effects of different membrane material on the butanol separation step were calculated.

UNIZAR has carried out combustion tests. Oxidation experiments of 1-butanol has been performed for different oxygen  concentrations that go from fuel-rich to fuel-lean conditions.



The results showed:

Increasing the amount of oxygen in the reactor inlet causes a shift in the conversion onset of 1-butanol to lower temperatures.

The stoichiometry also affects to the temperature of formation of products and the temperature where they reach their maximum concentration.

Increasing stoichiometry influences the hydrocarbons concentrations obtained (CH4, C2H6 and C4H8) that are produced in low amounts.

The kinetic model of different hydrocarbons and alcohols reactions developed by UNIZAR has been updated with a subset for describing the oxidation of 1-butanol. There is good agreement between the experimental and simulated results.

WP3_Follow up on activities

Under the WP3 (ABE fermentation and solvent recovery), since the last status update TU Wien has conducted extensive research regarding different membrane materials as well as potential membrane module designs for the separation of ABE from fermentation broth. The focus was put on commercially available PDMS (polydimethylsiloxane) and newly developed POMS (polyoxymethylsiloxan) membranes by different vendors. Flat sheet modules were tested for both materials while hollow fiber modules were only considered for PDMS membranes as they are not commercially available yet for POMS.

Influence of temperature, glucose and salt concentration on separation performance was tested. While an increase in temperature led to improved results, addition of glucose and ammonia chloride did not show negative impacts in the relevant concentration range. Both materials showed promising results although certain differences exist. POMS offers slightly higher butanol selectivity but PDMS has a slightly higher permeance and therefore overall higher flux. Which option is preferable must be further researched in the context of the overall process and its energy demand in the final upgrading steps.

Concluding, it was possible to show solvent enrichment from 1.5 wt% BuOH up to 31.5 wt% in a single upgrading step while also considering the influence of potential secondary components in the fermentation broth.

WP4_Follow up of activities

In the WP4 (Catalytic conversion of ethanol to butanol), bio-ethanol can be catalytically converted into butanol through alcohol dimerization called Guerbet reaction. This reaction is promoted by catalysts with a suitable combination of both acid and basic sites. Furthermore, addition of an active metal can favor the initial dehydrogenation of the alcohol to form the carbonyl intermediate.
In the first year g-Al2O3, hydroxyapatite and MgO were synthesized as powders to obtain high surface area supports for dispersion of Ruthenium or Nickel. Textural, acid and basic properties of the three supports and redox properties of the metals were characterized in order to optimize the catalyst formulation. Ni/MgO and Ru/MgO provided the best butanol yields and were chosen to be upgraded to catalytic pellets for operation in the pre-pilot scale rig.
The activity of the second year was focused on the dispersion of Ni or Ru on commercial pellets following two main routes: i) deposition of metals on MgO pellets ii) deposition of metals on MgO-coated g-Al2O3 pellets. Reduction of volume of catalytic bed can be achieved provided that a uniform dispersion of the metal is obtained according to route i) or surface area of MgO is significantly enhanced by deposition onto alumina according to route ii). After determination and optimization of the technique for production of the best performing catalytic pellets a suitable amount of catalyst will be supplied to HELBIO (Task 4.3) for the pre-pilot scale operation.